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Much of the study of string theoretic black holes has focussed on BPS black holes

since the degeneracy — or more precisely an appropriate index — associated with BPS

states are protected and do not change under a continuous variation of the various moduli.

Nevertheless it has been known for some time [1 – 3] that in some cases the index can jump

across codimension one subspaces of the moduli space on which the original state becomes

marginally unstable against possible decay into a pair of BPS states. Such subspaces

are known as walls of marginal stability, and the jump in the index across these walls —

known as the wall crossing formula — has been the subject of intense investigation in recent

years [4 – 12]. While most of the work has been focussed on half-BPS dyonic black holes in

N = 2 supersymmetric string theories, by now we also have a good understanding of this

phenomenon in N = 4 and N = 8 supersymmetric string theories [13 – 20]. In fact in the

latter theories the situation is somewhat better since we also have a good understanding of

the exact spectrum of BPS dyons in these theories. This allows us to verify the general wall

crossing formula derived from macroscopic considerations involving multi-centered black

hole solutions [7] against explicit results obtained from microstate counting [16, 17].

For deriving the wall crossing formula for walls on which the decay products carry

primitive charge vectors, the original techniques of [7] involving analysis of multi-centered

black hole solutions are equally applicable to theories with N = 2, 4 and 8 supersymmetries

in four dimensions. In the case of N = 2 supersymmetric theories these as well as other

techniques have been developed which allow us to generalize the wall crossing formula to the

cases where the final decay products carry non-primitive charge vectors [9 – 11]. However

so far these techniques have not been generalized to N > 2 supersymmetric string theories.

Recently by examining the exact formula for the dyon partition function in the special

case of heterotic string theory on T 6, refs. [18, 19] studied the jump in the dyon spectrum

of this theory across various walls of marginal stability, including the ones on which the

decay products are non-primitive, and proposed a general wall crossing formula for such

walls. The purpose of this paper is to give a macroscopic derivation of this formula from

the study of multi-centered black holes in a general N = 4 supersymmetric string theory.

As we shall see, this is possible and yields results in perfect agreement with the results

derived from microscopic analysis.1 Since the jump in the index across these walls is

exponentially small compared to the leading contribution, this reinforces our belief that

black holes capture not only the leading contribution to the statistical entropy but also the

exponentially suppressed contributions.

We begin by reviewing the derivation of the wall crossing formula in N = 2 super-

symmetric string theories. Let us consider the wall of marginal stability associated with

the decay of a dyon of charge (Q,P ) into a pair of primitive dyons of charges (Q1, P1)

and (Q2, P2), with Q and P denoting electric and magnetic charges in some basis. In this

case the jump in the index across this wall of marginal stability can be computed from the

following simple argument [4 – 9]. A classical analysis shows that a two centered solution

of total charge (Q,P ), with one center having charges (Q1, P1) and the other center having

1The formula for the dyon partition function was originally guessed in [18, 19] by imposing various

consistency conditions including known wall crossing formula for decay into primitive dyons. More recently

a proof has been suggested in [21].
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charges (Q2, P2), exist on one side of the wall and does not exist on the other side [4, 5].

Thus the jump in the index can be identified as the index associated with the two centered

solution. One also finds that as we approach the wall, the separation between the two cen-

ters approaches infinity. Thus in this limit the index can be identified as the product of the

index associated with each component, and the index associated with the supersymmetric

quantum mechanics describing relative motion between the two centers. The latter gives

a contribution of (−1)Q1·P2−Q2·P1+1 |Q1 · P2 − Q2 · P1|. Thus if dh(Q1, P1) and dh(Q2, P2)

denote the index associated with the decay products, the net change in the index will be

given by

(−1)Q1·P2−Q2·P1+1 |Q1 · P2 − Q2 · P1| dh(Q1, P1) dh(Q2, P2) . (1)

When the charge vectors (Q1, P1) and/or (Q2, P2) are non-primitive, the above formula is

known to undergo non-trivial modification [9 – 11].

Our goal in this paper will be to follow a similar logic for deriving the change in

the index across a wall of marginal stability where a quarter BPS state in an N = 4

supersymmetric string theory decays into a pair of half-BPS states. As we shall see, this

procedure can give the wall crossing formula non only for decay into a pair of primitive

dyons but also for decay into a pair of non-primitive dyons. We begin by introducing

some notations. For a given charge vector (Q,P ) we define helicity trace Bn via the

relation [22, 23]

Bn(Q,P ) =
1

n!
Tr(Q,P )

(
(−1)F (2h)n

)
, (2)

where Tr(Q,P ) denotes trace over states with charge (Q,P ), F denotes the fermion number

and h denotes the helicity of the state. Since a quarter BPS state breaks 12 out of the 16

supersymmetries, it has 12 fermion zero modes and we need at least 6 factors of 2h to get

a non-zero answer for the supertrace. We shall denote by d(Q,P ) the index −B6(Q,P )

associated with quarter BPS states. A typical quarter BPS supermultiplet contains states

of helicities between H − 3
2 and H + 3

2 , with the state of helicity H + s−3
2 coming with

a degeneracy of
(6
s

)
. It is easy to see that the contribution of these states to B6 is given

by (−1)2H+1, with the 1/6! in the normalization factor of B6 cancelling a factor of 6!

coming from sum over s. Thus d(Q,P ) effectively counts the number of quarter BPS

supermultiplets carrying charge (Q,P ) weighted by (−1)2H , H being the average helicity

of all the states in the supermultiplet. On the other hand half-BPS states break 8 out of the

16 supersymmetries, and hence we need 4 factors of 2h to get a non-vanishing supertrace.

We denote by dh(Qi, Pi) the index B4(Qi, Pi) associated with the half-BPS decay products.

dh(Qi, Pi) counts the number of half-BPS supermultiplets weighted by (−1)2H , H being

the average helicity of all the states in the half-BPS supermultiplet. Our goal is to calculate

the change in d(Q,P ) across a wall of marginal stability in terms of dh(Qi, Pi) associated

with the half-BPS decay products.

First consider the case when both decay products are primitive.2 In this case on one

side of the wall of marginal stability we have a two centered classical black hole solution,

2I wish to thank F. Denef for discussion on this case.
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with one center carrying charge (Q1, P1) and the other center carrying charge (Q2, P2).
3

This solution ceases to exist on the other side of the wall; hence the jump in d(Q,P )

across this wall can be identified as the contribution to −B6(Q,P ) from this two centered

solution. Now since the wall crossing formula is a change in the index, we expect it

to be invariant under a continuous change in the moduli.4 This allows us to work in a

region of the moduli space where one of the decay products (say with charge (Q1, P1))

is heavy and the other (with charge (Q2, P2)) is light. In this case we can describe the

system as the light particle moving in the background of the heavy particle, and ignore

the backreaction of the light particle on the dynamics of the heavy particle. We now note

that since the heavy particle breaks 8 out of 16 supersymmetries, in order to get a non-

vanishing contribution to the supertrace over the states of the heavy particle we must insert

a factor of (2h(1))
4 into the trace, h(1) being the helicity of the heavy particle. Since the

light particle moves in the background produced by the heavy particle, it only feels 8 of the

unbroken supersymmetries. Furthermore since the classical two centered solution is quarter

BPS, the light particle breaks 4 out of these 8 supersymmetries. As a result it carries 4

fermion zero modes, and we must insert a factor of (2h(2))
2 into the supertrace over the

light particle degrees of freedom to get a non-vanishing answer. On the other hand since

in flat space-time the light particle, being half-BPS, breaks 8 out of 16 supersymmetries,

it has altogether 8 fermion zero modes in flat space-time. 4 of these zero modes must

be lifted, ı.e. take part in the interaction, in the presence of the heavy particle. In fact

these must combine with the bosonic modes describing the physical coordinates of the light

particle to describe a supersymmetric quantum mechanics with 4 supersymmetries since

the final configuration has four unbroken supersymmetries. If drel denotes the number of

supersymmetric ground states of this quantum mechanical system, weighted by (−1)F ,

then the index −B6 of the two centered dyon system will be given by

dh(Q1, P1) dh(Q2, P2) drel . (3)

The normalization and sign factors work out as follows. First of all we note that the

coefficient of (2h(1))
4(2h(2))

2 term in (2h(1) + 2h(2))
6 is

(
6
4

)
. This factor of

(
6
4

)
combines

with the 1/6! in the definition of B6 to give 1/4!2!. The 4! now cancels the trace of

(−1)F (2h(1))
4 over the 8 fermion zero modes carried by the heavy state and 2! cancels

the trace of (−1)F (2h(2))
2 over the fermion zero modes carried by the light state, leaving

behind a minus sign. This minus sign compensates for the minus sign in the relation

between d(Q,P ) and B6(Q,P ).

In order to calculate drel we can work in a subspace of the moduli space where the

original dyon with charge (Q,P ) and the decay products carrying charges (Q1, P1) and

3Since both the final dyons are half-BPS states of the full N = 4 supersymmetry algebra, they are small

black holes [24, 25], but this does not affect our argument.
4In N = 2 supersymmetric string theories the decay products are half-BPS and can themselves decay

across walls of marginal stability. As a result the wall crossing formula also changes as a function of the

moduli. In contrast in the N = 4 supersymmetric string theories the decay products are half-BPS states

whose index does not change as we vary the moduli. Thus we expect the wall crossing formula to be

unchanged as we vary the moduli.
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(Q2, P2) can be regarded as half-BPS dyons of an N = 2 subalgebra. In this case we can

examine the situation from the point of view of N = 2 supersymmetry. In the absence

of the heavy particle the light particle would break 4 of the 8 supersymmetries and hence

would carry four fermion zero modes. However in the presence of the heavy particle these

fermion zero modes will be lifted since the heavy particle already breaks 4 of the 8 super-

symmetries and hence the light particle will not break any further supersymmetry. Thus

effectively the 4 fermion zero modes of the light particle will become interacting and com-

bine with the bosonic coordinates to give a supersymmetric quantum mechanics with four

supersymmetries. This must be the same interacting quantum mechanical system that we

got by analyzing the system from the N = 4 viewpoint, — the effect of truncation to the

N = 2 subsector being simply the removal of the 4 non-interacting fermion zero modes on

the light state. Now we can use the already existing results in N = 2 theory [7] to conclude

that this supersymmetric quantum mechnics has a set of supersymmetric ground states of

Witten index (−1)Q1·P2−Q2·P1+1 |Q1 ·P2 −Q2 ·P1|. Using (3) we now get the total jump in

the index across the wall

∆d(Q,P ) = (−1)Q1·P2−Q2·P1+1 |Q1 · P2 − Q2 · P1| dh(Q1, P1) dh(Q2, P2) . (4)

Note that the final formula is symmetric under the exchange of final state charges even

though we treated them differently in our analysis.

This finishes our analysis of the wall crossing formula for decay into a pair of primitive

dyons. Now consider the case where the light dyon carries a non-primitive charge vector,

ı.e. (Q2, P2) is given by some integer N2 times a a primitive charge vector (Q2/N2, P2/N2).

In this case besides the two centered configuration described earlier, the system also admits

multi-centered configurations, with the first center carrying charges (Q1, P1) and the others

carrying charges (αiQ2/N2, αiP2/N2), with αi ∈ Z, αi ≥ 1,
∑

i αi = N2. All of these

configurations cease to exist on the other side of the wall and hence could contribute to

the wall crossing formula. Since we are working in a region of the moduli space where

the dyons carrying charges of the form (αiQ2/N2, αiP2/N2) are light, they are also weakly

interacting. Thus we can regard the states of the full system as tensor products of the

states of the heavy particle of charge (Q1, P1) and the states of light particles carrying

charges (αiQ2/N2, αiP2/N2) moving in the background of the heavy particle. However the

correponding trace will vanish [12] since the heavy particle carries 8 fermion zero modes

requiring insertion of 4 powers of helicity into the supertrace and each of the light particles

carries 4 fermion zero modes, requiring insertion of 2 powers of helicity into trace over the

Hilbert space of each particle. Since we only have a total of 6 powers of helicity in the

definition of B6 we cannot saturate all the fermion zero modes.

There is however an exception to this rule. The above argument assumes that the full

Hilbert space is a direct product of the Hilbert spaces of the component dyons. However if

some of the components are identical then we must (anti-)symmetrize the wave-function and

the full Hilbert space is no longer a direct product of the Hilbert spaces of the component

dyons. Such configurations could give non-vanishing contribution to the index.5 We begin

5Similar issues arose in the analysis of [21].
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by examining the contribution from a multi-centered dyon configurations with one heavy

center of charge (Q1, P1) and L light centers each carrying charges (Q2/L, P2/L), L being

a factor of N2. Furthermore we take all these L light centers in the same internal quantum

state,6 and in the same state of the supersymmetric quantum mechanics describing the

motion of the light particle in the heavy particle background. We shall argue later that

these are the only types of multi-centered configurations which contribute to the index.

Let us now compute the contribution to the index from such a configuration. We denote

by hint the contribution to the helicity of one of the L light dyons from the internal quantum

state. This dyon also gets a contribution to the helicity from the supersymmetric quantum

mechanics describing the motion of the light particle in the heavy particle background, –

this is given by [7]

hrel = |Q1 · P2 − Q2 · P1|/(2L) − (1/2) − integer . (5)

Finally quantization of the 4 fermion zero modes produces a 4-fold degenerate state, with

1 state of helicity −1/2, two states of helicity 0 and one state of helicity 1/2. Let us denote

these four states by |i〉 with 1 ≤ i ≤ 4 and let ĥi be the contribution to the helicity of the

ith state from the fermion zero modes. Thus when we take the tensor product of a fixed

internal state of the light dyon, a fixed state of the supersymmetric quantum mechanics,

and the states obtained by quantizing the fermion zero mode, the states can be labelled by

the index i, with total helicity

hi = hint + hrel + ĥi . (6)

We shall refer to these states as single particle states. Our goal is to consider an L particle

state, with each of the L particles being in the same internal state and same state of

the supersymmetric quantum mechanics, and calculate the contribution to B6 from these

states. For this we need to first identify the statistics of the single particle states described

above. Naively the particle will be bosonic or fermionic depending on whether hi is integer

or half integer. However in the contribution to hrel given in (5), the part proportional to

|Q1 · P2 −Q2 · P1|/(2L) comes from the angular momentum of the electromagnetic field of

the dyon system and does not directly contribute to the statistics of the light particle. Thus

the particle should be regarded as bosonic or fermionic depending on whether 2hint+2ĥi+1

is even or odd. The L particle states are then labelled by specifying the occupation number

ni of the ith state, subject to the conditions that
∑

i ni = L, ni takes values 0 and 1 if

2hint + 2ĥi + 1 is odd and ni takes all non-negative integer values if 2hint + 2ĥi + 1 is even.

Let us now denote by gL the quantity:

gL = −
1

2!
TrL

(
(−1)2h (2h)2

)
, (7)

where TrL denotes trace over the Hilbert space of L particle states introduced above and

h in (7) stands for the total contribution to the helicity from the L light dyons. Then the

6By internal quantum state of a half-BPS dyon we shall refer to supersymmetry singlet part of the

state. We tensor this state with the states obtained by quantizing the fermion zero modes to get the full

supermultiplet.
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contribution to −B6 from these states will be given by the product of gL and dh(Q1, P1).

Using the description of the multiparticle states given above, we get

gL = −
1

2

∑

{ni},
P

i
ni=L

(−1)2
P

i
nihi

(
2
∑

k

nkhk

)2

. (8)

Using (6) we can write this as

gL = −(−1)(2hrel−1)L ĝL , (9)

where

ĝL =
1

2

∑

{ni},
P

i
ni=L

(−1)
P

i
ni(2hint+2ĥi+1)

(
2
∑

k

nk(hint + ĥk + hrel)

)2

. (10)

ĝL is most conveniently evaluated by first calculating the partition function

f(µ, β) ≡
∑

{ni}

(−1)
P

i
ni(2hint+2ĥi+1) e2β

P

i
ni(hint+ĥi+hrel) eµ

P

i
ni , (11)

and then calculating ĝL as the coefficient of the eµL term in

1

2

[
d2

dβ2
f(µ, β)

]

β=0

. (12)

As described earlier, the sum over ni is restricted to 0 and 1 for 2hint + 2ĥi + 1 odd and to

all non-negative integers for 2hint + 2ĥi + 1 even. This gives

f(µ, β) =
∏

i

(
1 − eµ+2β(hint+ĥi+hrel)

)(−1)2hint+2ĥi

. (13)

Thus

ln f(µ, β) =
∑

i

(−1)2hint+2ĥi ln
(
1 − eµ+2β(hint+ĥi+hrel)

)

= −
∞∑

k=1

1

k

∑

i

(−1)2hint+2ĥi ek(µ+2β(hint+ĥi+hrel))

=

∞∑

k=1

1

k
(−1)2hint ek(µ+2β(hint+hrel)) (ekβ/2 − e−kβ/2)2 , (14)

where in the second step we have expanded ln(1− x) in a Taylor series expansion in x and

in the last step we have explicitly carried out the sum over i using the fact that there is

one state with ĥi = −1/2, two states with ĥi = 0 and one state with ĥi = 1/2. This gives,

from (12)

ĝL = (−1)2hint L , (15)

– 6 –
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and hence, from (5), (9),

gL = (−1)Q1·P2−Q2·P1+2hint+1 L . (16)

As already mentioned below (7), the net contribution to the index −B6 from the specific

configurations analyzed above will be given by gL dh(Q1, P1).

The total contribution to −B6 from the configurations where the light dyon is split into

L identical centers is obtained by summing gL dh(Q1, P1) over all the internal states of the

dyon of charge (Q2/L, P2/L) and all the supersymmetric ground states of the supersymmet-

ric quantum mechanics describing the motion of a single particle of charge (Q2/L, P2/L)

in the background of the heavy particle with charge (Q1, P1). The former gives a factor of

dh(Q2/L, P2/L) while the latter gives a factor of |Q1 · P2 − Q2 · P1|/L [7]. This gives the

net contribution to the index from these configurations to be

(−1)Q1·P2−Q2·P1+1 |Q1 · P2 − Q2 · P1| dh(Q1, P1)dh(Q2/L, P2/L) . (17)

Note that (−1)2hint has been absorbed into the definition of dh(Q2/L, P2/L). Finally we

must sum over all possible values of L since all multi-centered configurations with one

center having charge (Q1, P1) and the other L centers having charges (Q2/L, P2/L) will

disappear across the wall of marginal stability on which the original dyon decays into dyons

of charge (Q1, P1) and (Q2, P2). This gives the final formula for the jump in the index to

be

(−1)Q1·P2−Q2·P1+1 |Q1 · P2 − Q2 · P1|
∑

L|(Q2,P2)

dh(Q1, P1)dh(Q2/L, P2/L) . (18)

One could in principle consider more general configurations where the charge vector

(Q2, P2) splits into different groups with the members within each group being identical

but members of different groups being not identical. In this case each group will require

an insertion of an h2 factor to saturate its fermion zero modes. Since a factor of h4 is

already used up by the heavy state we see that we can allow at most one group. Thus the

configurations we have analyzed above are the only ones which can contribute to B6.

This finishes our analysis of the wall crossing formula when one of the decay products

is non-primitive. What about the case when both decay products are non-primitive? For

this we let both (Q1, P1) and (Q2, P2) be non-primitive and continue to work in the corner

of the moduli space where the dyon of charge (Q1, P1) is much heavier than the dyon

of charge (Q2, P2). Now the dyon of charge (Q1, P1) can also split into multiple centers

producing a non-spherically symmetric background for the dyons of charge (Q2/L, P2/L).

However by arguments similar to the ones given above we can conclude that unless all

the centers into which (Q1, P1) splits are in the same quantum state, the contribution to

the index from these configurations will vanish. If we use position space basis for these

centers — which is the natural basis for heavy particles — we see that the different centers

into which the dyon of charge (Q1, P1) splits must coincide in space. Thus it continues

to produce a spherically symmetric potential for dyons of charge (Q2/L, P2/L) and our

previous analysis goes through except for a possible change in the overall factor associated

– 7 –
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with the index of the dyon of charge (Q1, P1). Thus the jump in the index must take the

form:

(−1)Q1·P2−Q2·P1+1 |Q1 · P2 − Q2 · P1|
∑

L|(Q2,P2)

fh(Q1, P1)dh(Q2/L, P2/L) , (19)

for some function fh(Q1, P1). fh(Q1, P1) gets a contribution of dh(Q1, P1) from the single

dyon state but also possible additional contributions from the multi-dyon states into which

the dyon of charge (Q1, P1) may split. To determine the form of the function fh we can go

to the corner of the moduli space where the dyon of charge (Q2, P2) becomes heavy and

the dyon of charge (Q1, P1) becomes light and repeat our analysis. This gives the final

form of the jump in the index for a general decay where both (Q1, P1) and (Q2, P2) are

non-primitive:

∆d(Q,P ) = (−1)Q1·P2−Q2·P1+1 |Q1 · P2 − Q2 · P1| ×

×
∑

L1|(Q1,P1)

dh(Q1/L1, P1/L1)
∑

L2|(Q2,P2)

dh(Q2/L2, P2/L2) . (20)

This agrees with the result of [18, 19] derived from the microscopic formula for the dyon

partition function [18, 19, 21] for the special case of heterotic string theory compactified

on T 6.
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